
P H V S I C A L R E V I E W V O L U M E 1 3 4 , N U M B E R 6 B 22 J U N E 1 9 6 4 

Scattering Formalism for Singular Potential Theory 
A. PAIS 

The Rockefeller Institute, New York, New York 

TAI TSUN W U * 

Gordon McKay Laboratory, Harvard University, Cambridge, Massachusetts 
(Received 12 February 1964) 

When using power-series expansions in the coupling constant (s) for the computation of scattering ampli
tudes in singular potential theory, it is necessary to introduce some cutoff in order to avoid divergences of 
the individual terms in this series. In earlier work this was done by cutting off the potential. I t is here shown 
that the general scattering formalism actually contains an intrinsic limiting operation which makes it 
unnecessary to introduce a cutoff as an extraneous computational device. For regular potentials one tacitly 
and justifiedly exchanges this operation with another step in the derivations. It is not clear whether such a 
' 'built-in" cutoff procedure also exists in unrenormalizable field theory. 

1. INTRODUCTION 

RECENTLY there has been a revival of interest in 
the problem of scattering by a static singular 

potential.1-3 These explorations were motivated by a 
desire to have some understanding of unrenormalizable 
field theories. In order to make contact with field 
theory, attempts have been made to expand in powers 
of the potential strength. For this purpose, cutoffs are 
usually introduced by modifying the singular potential, 
or equivalently by considering the singular potential as 
the limit of a sequence of nonsingular potentials. It is 
the purpose of this paper to show that an intrinsic 
limiting operation is already contained in the scattering 
formalism, so that the introduction of an extraneous 
cutoff as a mathematical device is actually unnecessary. 

We confine ourselves to potentials for which 

•/ c 
r2\V(r)\dr<<*> (1.1) 

for any c>0, and for which V(r) is bounded for all 
r^c>0. To begin with we consider s-wave scattering. 
Let \p(k,r) be the required radial wave function for wave 
number k which satisfies a suitable boundary condition 
near r=0, and which behaves for large r asymptotically 
as 

Hk,r)^ik~l[_e~ikr-S{k)eikr']. (1.2) 

For more detailed definitions see Sec. 2. In terms of the 
Jost function4 f(\;k,r), where X denotes the strength 
of the potential, Eq. (1.2) may be rewritten as 

Mk9r) = &kriUfrlk,r)-S(k)fQ<; - * , r ) ] . (1.3) 

The scattering amplitude A (k) is 

A{k)={2ik)-l[_S{k)-r\, (1.4) 

* Alfred P. Sloan Foundation Fellow. 
i N. N. Khuri and A. Pais, Rev. Mod. Phys, 36, 590 (1964)., 
2 G. Tiktopoulos and S. Treiman (to be published). 
3 A. Pais and T. T. Wu, J. Math. Phys. 5, 799 (1964). 
« R. Jost, Helv. Phys. Acta 20, 256 (1947). 

so that 

where 

Hk,r) = g(X; k,r)+A(k)f(\; -k,r), (1.5) 

g(X; k,r)= (-2^)-1[/(X; k,r)-f(\; - £ / ) ] • (1-6) 

For the conventionally so-called regular potentials, 
i.e., potentials that satisfy 

F r\V(r)\dr<*> (1.7) 

in addition to (1.1), the following relation between /, 
g and A is well known: 

A(k)- •• —limg(\; fe,r)/lim/(X; 
r->0 r->0 

-k,r). (1.8) 

It must be emphasized that the validity of Eqs. (1.2)-
(1.6) is independent of the behavior of V(r) in the 
neighborhood of r=0, and in particular does not require 
the existence of the integral (1.7). In other words, 
Eqs. (1.2)—(1.6) also hold for singular potentials, i.e., 
potentials that are not regular. On the other hand, 
Eq. (1.8) does not have such general validity. For 
example, for a repulsive r~4 potential, neither of the 
limits on the right-hand side of (1.8) exist. 

It will be shown in Sec. 2, however, that the following 
modification of Eq. (1.8) holds for regular as well as for 
singular potentials: 

A(ft)= -Hm[g(X; k,r)/f(\; - * , r ) ] . (1-9) 
r-*0 

Equation (1.9) is derived in Sec. 2 by a judicious choice 
of the Green's function in the scattering integral 
equation, whereby A(k) appears explicitly in the 
integral equation. If the right-hand side of Eq. (1.8) 
exists, as in the case of regular potentials, then Eq. (1.9) 
reduces to Eq. (1.8). This reduction is discussed in 
some detail in Sec. 3. If the right-hand side of Eq. (1.8) 
fails to make any sense, then one must use the limit of 
the quotient Eq. (1.9) instead of the quotient of the 
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limits. In Sec. 4 examples will be found of different 
ways in which Eq. (1.8) fails. 

The substitution of Eq. (1.9) into Eq. (1.4) im
mediately yields 

5(*) = lim[/(X; k,r)/f(X; - * , r ) ] . (1-10) 
r-*0 

However, Eq. (1.9) is more general than Eq. (1.10) 
since Eq. (1.10) has no content for k = 0. 

Equation (1.9) also suggests a new classification of 
potentials into the regular and the singular varieties. We 
propose that a potential is called regular if and only if 
Eq. (1.8) holds in addition to Eq. (1.9). Potentials that 
satisfy Eq. (1.7) [in addition to Eq. (1.1)] are always 
regular in this new sense, but Eq. (1.7) is by no means 
a necessary condition, as shown in example C of Sec. 4. 
I t seems that this new classification is more natural 
physically, because there does not seem to be a simple 
physical interpretation of the absolute value of a 
potential. 

I t should be emphasized that Eq. (1.9) is not an ad 
hoc prescription for the order of limits. This equation is 
rather a straightforward consequence of the theory. I t 
also leads to some new insight into the nature of the 
limiting processes for singular potentials. 

The point is this. In singular potential theory, power-
series expansions in the coupling strength, such as the 
Born series, have no meaning as every term in the series 
is divergent. In earlier work, one first introduced a 
cutoff in the potential, then legitimately expanded in 
a Born series, then resummed this series to get a finite 
answer as the cutoff tends to zero. Now we shall see in 
Sec. 2 that it is possible to find A (k) by using power 
series expansions in the coupling constant without ever 
to have to introduce a cutoff. The reason for this is that 
g(\k,r) and f(\ — k}r) in Eq. (1.6) are, for given r^O 
and given k, entire functions in the coupling constant. 
This property has played an important role5 in the 
study of convergence of expansions in scattering theory 
for regular potentials. But it is also true for singular 
potentials that we may legitimately use Born series for 
the functions g and / , for any r> 0. Then what operation 
takes over the role of the limit operation on a cutoff? 
This is precisely the limit process which appears in 
Eq. (1.9) prescribed by the theory as an intrinsic rather 
than an added prescription. In order to make effective 
use of this intrinsic property, it appears essential to 
use integral equations with boundary values which are 
independent of the coupling constants. 

I t would be a major step to have a formulation of 
unrenormalizable field theory with a "built-in" limiting 
process, as we have found here for potential theory. We 
do not know how to achieve this in general. However, 
we hold it likely that procedures similar to the present 
ones can be developed for Bethe-Salpeter equations. 
We hope to come back to this elsewhere. 

6 R. Jost and A. Pais, Phys. Rev. 82, 840 (1951). 

2. SCATTERING FORMALISM 

We consider, for clarity, the case of s-wave scattering 
first. Let $(k,r) be the s-wave part of the wave function 
multiplied by r. Then xp satisfies, in the range (0,<*>)? 

[ ( J 2 / J r 2 ) + ^ 2 - X F ( f ) X V ) = 0. (2.1) 

Here k ^ 0. We shall put no restriction on the behavior 
of V(r) near r=0. However, to avoid unnecessary 
complications, we retain the restrictions stated at the 
beginning of the introduction, in particular Eq. (1.1). 
As r —> co, 

yp{k,r)^k~l $>mkr+A (k)eihr, (2.2) 

where A (k) remains to be determined. If k = 0, the first 
term on the right-hand side of (2.2) is to be interpreted 
as r. 

The condition near r = 0 has been discussed by 
Kramers.6 We shall take the following formulation. 
Consider the set of all possible nontrivial solutions to 
(2.1) without any boundary condition. Since (2.1) is 
a linear differential equation of second order, this set 
may be parametrized by two complex numbers. We 
distinguish two possible cases. 

Case I. One cannot divide the set in two parts, such 
that, as r —•» 0, the solutions \pi in one part are small 
compared to the solutions fa in the other part, so that 

lim = 0 (2.3) 

is not true. This case has been discussed in detail by 
Case7 and we shall not consider it any further. 

Case II. One can divide the set as indicated, and 
Eq. (2.3) is true. Let yps{k,r) be any solution of the 
"small" kind.8 Without loss of generality we choose 
\ps(k,r) to be real. 

We use as a condition on \l/(k,r) that 

\f/(k,r) = c o n s t a t V ) • (2.4) 

Equations (2.1), (2.2), and (2.4) determine \p(k,r) 
uniquely. 

Write Eq. (2.1) in the form 

[ ( W + ^ ( W = ̂ ( ^ ( ^ ) , (2.5) 
and consider the right-hand side as the source term. Let 

/•OO 

^0(f t , r)=^(*,f)-X / dr'k-1 smk(r'-r)V(r')Mk/). 

Then «Ao(&/) satisfies the homogeneous equation 

[(<PA*r*)+fcs>o(*,r) = 0. (2.7) 

6 H. A. Kramers, Quantum Mechanics (Interscience Publishers, 
Inc., New York, 1957), pp. 183, 184. 

^ K. M. Case, Phys. Rev. 80, 797 (1950). 
8 Of course, any other solution of the "small" kind is a constant 

multiple oi\ps(k,r). 
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By (2.6), (2.7), and (2.2) we find that 

fo(k,r) - hr1 svakr+A (k)eikr. (2.8) 

Equation (2.6), with (2.8), is an integral equation for 
\p(k,r). Note that in this integral equation A (k) appears 
explicitly, and is yet to be determined by Eq. (2.4). 

Define /(X; k,r) and g(X; k,r) by 

f(X; k,r)-\ I dr'k-1 sink(r'-r) 

XV(r')f{\;k/) = e-ikr, (2.9) 
and 

g ( X ; * , r ) - x f dr'k~1&nk(/-r) 

X V(r')g(\; k/) = k~l sinkr. (2.10) 

Then Eq. (1.5) follows from Eq. (2.6). Here /(X; k,r) is 
the Jost function.4 Since Eqs. (2.9) and (2.10) are 
Volterra integral equations, for any fixed r > 0 , f(\; k,r), 
and g(X,&,r) are entire functions of X by Eq. (1.1). From 
this it does not follow that yp(k,r) has the same property 
[see Eq. (1.5)] because the dependence of A(k) on X 
changes in general the analyticity properties of \p as 
compared to / and g. 

Let yps
f(k,r) be a solution of (2.1) linearly independent 

of \ps(k,r). Since /(X;—k,r) and g(X; k,r) both satisfy 
(2.1), they are linear combinations of \f/s and yf/J: 

/ ( \ ; -k,r)=ats(k,r)+a%'(k,r), (2.11) 
and 

g(X; M = A M M + 0 W ( V ) • (2.12) 

A comparison of Eq. (2.4) with Eqs. (1.5), (2.11), and 
(2.12) gives 

(3'+Aa' = 0. (2.13) 

I t is not possible for both OL and ft to vanish, because, 
in that case, / and g would be linearly dependent, which 
contradicts Eqs. (2.9) and (2.10). We thus consider 
two cases: (a) a ' = 0 and (b) OL 5*0. 

Case (a): a ' = 0. In this case, \p{k,r) does not exist, 
as Eq. (2.13) cannot be satisfied. Moreover, /(X; —k,r) 
is a constant multiple of a real function. Hence the 
right-hand side of Eq. (2.9) is a constant multiple of a 
real function. This requires k = 0. Thus case (a) corre
sponds to the situation of a zero-energy bound state, 
&(0,r) being the bound-state wave function. In this 
case, we say that A is infinite. 

Case (b): a'?^0. In this case, there is no bound state 
at this energy, and 

A(k)=-ft/a'. (2.14) 

By Eqs. (2.2), (2.11), and (2.12), Eq. (2.14) can be 
written in the form Eq. (1.9). Moreover, this limit is 
guaranteed to exist in this case by (2.14). 

Thus we have now shown what was contended in 
Sec. 1. The simple trick by which we have reached our 
aim is to use in Eq. (2.6) a Green's function which 

"avoids the origin." This in turn is possible due to the 
choice Eq. (2.8) of the boundary value. 

Once again, as in earlier work on singular potentials1 

(and on unrenormalizable field theory9) it appears 
expedient to split the sought for scattering wave 
function in two parts. However, the present splitting is 
not identical with the one used earlier. To see this 
consider the zero-energy equations 

/(x ;0,r)-\J dr'(r'-

J f 

/•oo 

/ dr'(r'-
J r 

*(X;0,r)-X 

• 0 W / C X ; 0 / ) = i , (2.15) 

• f ) 7 ( O g ( X ; 0 / ) = r , (2.16) 

which follow from Eqs. (2.9) and (2.10). From these 
equations it is readily checked10 that the split used 
earlier is as follows. One part is a linear combination 
of / and g, the other exactly soluble part is essentially 
A /r. With this last method the introduction of a cutoff 
could not be avoided. 

Finally, for 1^0, Eq. (2.1) is replaced by 

r J 2 1(1+1) -i 
_ + £ 2 X F ( r ) k f t ^ O . (2.17) 

Ldr2 r2 J 

As r —> oo, 

lh(A,r)~*r1 ffatkr-ihti+AiWe**. (2.18) 
The discussion of the condition near r = 0 is the same 
as before. The integral equations (2.9) and (2.10) are 
generalized to 

fi(k;k,r)+\ 

/•CO 

/ dr'irrj 
J r 

l^J^(kr)Y^(kr') 

-J^(kr')Y^(kr)-]V{r')fi{\;k/) 

= ( J r f e O 1 ^ - * ) " - ^ * J ( 2 ) O ) , (2.19) 

and 

g,(X;k,r)+\ f dr'{rrj 
J r 

i*tJM(kr)Y^(kr') 

-J^(krf)Yl^QzrW(r')gl^] k/) 

^dTk-^V^ikr), (2.20) 

while Eq. (1.9) is essentially not changed: 

Ai(k)=— lim 
^ / i ( X ; - * , 0 

(2.21) 

9 G. Feinberg and A. Pais, Phys. Rev. 133, B477 (1964). 
10 The detailed connection is as follows. Using the quantities ^ I 

and ^ 2 defined in Ref. 1, Eq. (2.6) and ¥j<i>, *2(2) ibid. Eq. (2.12) 
one has r£2

( 1 )=g, r ^ 2
( 2 ) + l = / , f¥i=-4, ^ 2 = g - M ( / - l ) . 
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3. REGULAR POTENTIALS 
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while 

We consider in this section potentials which in addi
tion satisfy Eq. (1.7). In this case, considering again 
only the s wave, we define \f/s and \j/J as the solutions of 
the integral equations 

g(X;0,r) r ( l - y ) 
A (0) = - K m _ = - (v\u*)*>——— , (4.6) 

•~°/(X;0,r) 

as obtained before.1 

r(i+v) 

tf.(V)+x 

and 

4>*'(k,r)+\ 

f dr'k-1 

Jo 

f dr'k'1 

Jo 

sink (r—r') 

X V (r')f„ (k/) = k-1 sinkr, (3.1) 

sink(r—r') 

XV(r')fs'(k/) = coskr. (3.2) 

V(r) = (4.7) 

By the theory of Volterra integral equations,11 the Born 
series converges uniformly in r for both (3.1) and (3.2). 
Moreover 

limfc(*,r) = 0 , (3.3) 
r->0 

and 
lim^ /(*,r) = l . (3.4) 
r-*0 

Thus they satisfy all the conditions previously pre
scribed for \f/s and \j/s

f. With this choice of \ps and \//s', 
Eqs. (2.11) and (2.12) yield 

Example B 

As a second example, let 

\r~\ r < l , 

lo. r>i . 

I t is easily verified in this case that, for r< 1, 

/ ( X ; - V ) = 4 ^ / V * { f t [ F / ( * ) / , ( f t r ) - F r ( f t r ) / / ( f t ) ] 
- (h+ik)LYv{k)Jv{kr)-Yv{kr)Jv{k)-]} , (4.8) 

and 

- ( p - 1 s i n ^ + c o s ^ ) [ F , ( ^ ) / , ( ^ ) - F y ( ^ ) / , ( ^ ) ] } . 

(4.9) 

where 

and 

l i m / ( X ; - * , r W 

limg(X;£,r) = /3'. 

(3.5) 

13.6) 

Therefore, by Eq. (2.14) we obtain Eq. (1.8) for case 
11(b). Thus, for regular potentials, Eq. (1.8) holds in 
addition to Eq. (1.9). 

4. EXAMPLES 

We give here three examples to illustrate the various 
possibilities. 

Example A 

As a first example let k = 0, and 

7(r) = f—r (4.1) 

with m>3. In this case1 

/(A; Oyr)=(v\^)->T(l+vy/*Iy(z), (4.2) 

g(X; 0,r)= ( .X 1 / 2 )T( l - , ) r 1 / 2 /_ , ( s ) , (4.3) 

v={m-2)-\ (4.4) 

Z = 2J/X1 'V-1/<2*>. (4.5) 

Thus this belongs to case / if X<0. If X>0, this belongs 
to case 11(b). In the latter case, it is easily verified that 
both /(X,0,r) and g(X;0,r) are unbounded as r—»0, 

11 We are indebted to Professor H. McKean for a helpful 
discussion on this point. 

„=( i+X)i /» . (4 .1 0) 

This belongs to case I if X < — | . If X^ — | , it belongs 
to case 11(b). Again in the latter case, as r —» 0, 

/(X; -k,r)^wrll2eik 

Xl(h+ik)Jv(k)-kJv
f(k)-]Yv(kr), (4.11) 

and 

g(X; k,r)^iirr1/2 

XZ^k-1 smk+cosk)Jv(k)-smkJv'(k)lYv(kr). (4.12) 

If 0 > X ^ ~ J , then 

lim/(X; - * , r ) = limg(X; *,r) = 0. (4.13) 
r-*0 r-*0 

Thus Eq. (1.8) is meaningless, but Eq. (1.9) gives 

(%k~l sin£+cos&)/„(&) — sinkJv'(k) 
4 ( * )=-* _ p-ik_ 

£+ik)Jv{k)-kJv'(k) 
(4.14) 

and 

where 

and 

Thus we have now seen two possible ways in which 
Eq. (1.8) can fail. I t does so in example A because we 
get oo/oo and in example B with 0 > X ^ — \ because we 
get 0/0. In either case Eq. (1.9) works well. 

If X>0, then, near r = 0 , /(X; —k, r) is unbounded, 
and g(X; k,r) is unbounded unless 

(ik-1 sinA+cosfc)/F(A)-sin*Jr/(ft) = 0. (4.15) 

These are just the points where the phase shift is a 
multiple of w. Again Eq. (1.8) is meaningless but 
Eq. (1.9) gives Eq. (4.14). 
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Example C 
Consider, as a last example, the rather pathological 

potential 

In this case, we can define $s{k,r) and ip8'(k,r) by 
Eqs. (3.1) and (3.2). It can be verified that the two 
Born series converge, and Eqs. (3.3)-(3.6) and (1.8) 

I. INTRODUCTION 

MANY authors have discussed threshold effects, or 
cusps, in elementary particle reactions, including 

the case of a threshold for the production of an unstable 
particle.1"4 Questions naturally arise as to whether 
these threshold effects can be responsible for sizeable 
peaks in cross sections; and if so, whether such peaks 
should be classified as elementary particles or as 
phenomena of an essentially different character. The 
purpose of this paper is to call attention to a situation 
in which threshold effects do indeed produce sizeable 
peaks; namely, when there exists a pole in the S matrix 
close to an S-wave threshold on the unphysical sheet 
reached by passing through the branch cut associated 

* Work supported in part by the U. S. Atomic Energy 
Commission. 

t Alfred P. Sloan Foundation Fellow. 
1E. P. Wigner, Phys. Rev. 73, 1002 (1948). R. Newton, Ann. 

Phys. (N. Y.) 4, 29 (1958). L. Fonda and R. Newton, Phys. Rev. 
119, 1394 (1960). 

2 J. S. Ball and W. R. Frazer, Phys. Rev. Letters 7, 204 (1961). 
3 M. Nauenberg and A. Pais, Phys. Rev. 126, 360 (1962). 
4 A. Baz>, Zh. Eksperim. i Teor. Fiz. 40, 1511 (1961) [English 

transl.: Soviet Phys.—JETP 13, 1058 (1961)]; Y. Fujii, Nihon 
University, Tokyo, Physics Department (unpublished); Y. Fujii, 
Progr. Theoret. Phys. (Kyoto) 29, 71 (1963); Y. Fujii and M. 
Uehara, Progr. Theoret, Phys. (Kyoto) Suppl. 21, 138 (1963). 

hold. Thus, for this potential, all the properties of a 
regular potential are obtained even though it does not 
satisfy Eq. (1.2). 

Note added in proof. We want to thank Dr. M. B6g 
for drawing our attention to a paper by N. Limic 
[Nuovo Cimento 26, 581 (1962)] which contains the 
statement that for singular potentials the S-matrix 
element for given / is the limit of the quotient of two 
Jost functions. 

with the threshold. Moreover, we conjecture that this 
situation is very likely to be responsible whenever a 
threshold effect manifests itself as a peak comparable 
to those associated with particles. From the point of 
view of 5-matrix theory, a threshold effect of this nature 
can quite properly be called a particle since it arises 
from a pole in the S matrix. 

In Sec. II, we shall discuss these points in more detail 
by considering some examples. The simplest example, 
given in Sec. IIA, of the type of threshold effect we are 
discussing is the "virtual state" occurring in the lS state 
of the neutron-proton system. In Sec. IIB, the case of 
two channels involving only stable particles is discussed, 
and in Sec. IIC, two channels where one of the particles 
in the second channel is unstable. The latter case is an 
extension of the work of Nauenberg and Pais.3 In 
Sec. I l l , we consider threshold effects within the 
framework of a dynamical model, using the matrix 
ND~l formalism. Some clarification is thereby obtained 
of the work by Ball and Frazer on peaks in cross 
sections near the threshold for production of an un
stable particle.2 Lastly, in Sec. IV we discuss some 
possible experimental manifestations of threshold 
effects, 
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S-Matrix Poles Close to Threshold* 
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Two-channel processes are studied to determine whether sizeable peaks can be produced in elastic scat
tering for one of the channels by threshold effects arising from the second channel (taken to be in an 5-wave 
state). The problem is first examined by means of a simple model whose analytic properties can easily be 
deduced. It is found that, when all the particles are stable, large cusps occur if there is a pole of the 5 matrix 
on an unphysical sheet in the vicinity of the inelastic threshold. The cusps become "woolly" when one of 
the particles in the second channel is allowed to be unstable. Similar results are obtained in a calculation 
using an NLf1 formulation. These 5-matrix poles correspond to virtual states of the particles in the in
elastic channel, their positions on the unphysical sheets depending on the force of interaction between the 
particles. It is further suggested that some of the peaks observed in experiment may be of this type, having 
their origins in inelastic thresholds rather than direct particle resonances. In particular, the F0* at 1815 
MeV and the K\K\ peak near threshold may be manifestations of this. 


